Human history becomes more and more a race between education and catastrophe.
— H. G. Wells, 1920

Jeffrey Bennett

www.jeffreybennett.com
jeff@bigkidscience.com
Strategies for Teaching (Math and Science)

Outline:

• 1 Key to Student Success
• 3 Big Picture Ideas about Teaching
• 5 General Suggestions for Successful Teaching
• 7 Pedagogical Strategies for Math/Science Teaching
• Questions/discussion
Teaching: The transmission of knowledge *and* of the means to acquire additional knowledge from one person to others.
One
Key to Student Success

You cannot learn without studying.
One Key to Student Success

You cannot learn without studying.

Studying Active engagement of the brain.

E.g., can include lecture, videos, etc., if you are engaged.

And can exclude homework, labs, reading if they are done mindlessly.
One Key to Student Success

You cannot learn without studying.

Full-time students, time spent studying (outside class):

• 1960s: ~25 hours per week
• Today: ~14 hours per week

→ Unless today’s students study far more efficiently (unlikely given distractions), then they are learning less than counterparts of the past.
One
Key to Student Success

You cannot learn without studying.

Multitasking (noun)
doing several things at once, all of them poorly.
Three Big Picture Ideas about Teaching

1. You can’t actually “teach” anything to anybody...
 Rather, a good teacher enables students to learn something for themselves.

 in other words …
This doesn’t work...

Education is not the filling of a pail, but the lighting of a fire.

— William Butler Yeats
Three Big Picture Ideas about Teaching

1. You can’t actually “teach” anything to anybody...

2. Brains are brains.
 • Children and grownups all learn the same way…
 • … it’s just that as we get older, our brains are filled with more prior knowledge (or prior misconceptions).
Example: Everyone shares issues of *scale*
Three Big Picture Ideas about Teaching

1. You can’t actually “teach” anything to anybody...
2. Brains are brains.
3. People have been teaching successfully for thousands of years.

The difference today is:
- in the past, teaching was usually one-on-one, educating a small % of population
- today, we hope to “mass produce” education for all
Five General Suggestions for Teaching

1. Above all, try to ensure that your students study.
Five General Suggestions for Teaching

1. Above all, try to ensure that your students study.

 College Rule of Thumb:
 2–3 hours outside class for each unit of credit
Five
General Suggestions for Teaching

1. *Above all, try to ensure that your students study.*

 College Rule of Thumb:

 2–3 hours outside class for each unit of credit

 ➔ class time should represent no more than 1/4 to 1/3 of total student “time on task”
1. Above all, try to ensure that your students study.

College Rule of Thumb:
2–3 hours outside class for each unit of credit

→ class time should represent no more than 1/4 to 1/3 of total student “time on task”

No matter how good your textbook…

No matter how effective your use of class time…

Teaching success depends primarily on motivating students to make good use of study time outside of the classroom.
(and how do you do that?)
Major components of study time:
- reading
- homework
- exam preparation

from *How to Succeed in College Classes*

<table>
<thead>
<tr>
<th>If your course is:</th>
<th>time for reading the assigned text (per week)</th>
<th>time for homework assignments (per week)</th>
<th>time for review and test preparation (average per week)</th>
<th>total study time (per week)</th>
</tr>
</thead>
<tbody>
<tr>
<td>3 credits</td>
<td>2 to 4 hours</td>
<td>2 to 3 hours</td>
<td>2 hours</td>
<td>6 to 9 hours</td>
</tr>
<tr>
<td>4 credits</td>
<td>3 to 5 hours</td>
<td>2 to 4 hours</td>
<td>3 hours</td>
<td>8 to 12 hours</td>
</tr>
<tr>
<td>5 credits</td>
<td>3 to 5 hours</td>
<td>3 to 6 hours</td>
<td>4 hours</td>
<td>10 to 15 hours</td>
</tr>
</tbody>
</table>

* Appears in all my textbooks; or freely download from my web site.
Five General Suggestions for Teaching

1. Above all, try to ensure that your students study.

2. Provide structure and assignments that will help students study sufficiently and efficiently.
Five General Suggestions for Teaching

1. Above all, try to ensure that your students study.

2. Provide structure and assignments that will help students study sufficiently and efficiently.

 Class time: motivation and guidance

 Assignments: Reading, homework, exams
1. Above all, try to ensure that your students study.

2. Provide structure and assignments that will help students study sufficiently and efficiently.

3. Teach for the long term by focusing on three linked goals: education, perspective, inspiration.
Five General Suggestions for Teaching

1. *Above all, try to ensure that your students study.*

2. *Provide structure and assignments that will help students study sufficiently and efficiently.*

3. *Teach for the long term by focusing on three linked goals: education, perspective, inspiration.*

4. *Set high but realistic expectations (and spell them out clearly).*
Five General Suggestions for Teaching

1. Above all, try to ensure that your students study.

2. Provide structure and assignments that will help students study sufficiently and efficiently.

3. Teach for the long term by focusing on three linked goals: education, perspective, inspiration.

4. Set high but realistic expectations (and spell them out clearly).

5. Don’t take it personally.
Seven Pedagogical Strategies for Math/Science
Strategy 1. Begin With and Stay Focused on the Big Picture

Premise: Science is filled with interesting facts and details, but they’ll be absorbed only if they are fit into “big picture” of the subject matter.
Strategy 1. Begin With and Stay Focused on the Big Picture

Examples of the Big Picture:

- All science: Nature of science; science vs. nonscience (next slide)

- Astronomy: Seeking to understand our place in the universe.

- Biology: Seeking to understand the nature and evolution of life.

- Physics: Seeking to understand how we interact with physical surroundings.

- Math: Seeking tools that help us understand the issues we face in our daily lives.
Strategy 1. Begin With and Stay Focused on the Big Picture

Example:

“Which one is bigger?”
Purposes of Science

• a way of distinguishing possibilities from realities

• a way of helping people come to agreement
Hallmarks of Science

1. Seeks explanations for observed phenomena based on natural causes.

2. Progresses through the creation and testing of models that explain nature as simply as possible.

3. Makes testable predictions that would force us to revise or abandon model if predictions do not agree with observations.
Strategy 2. Always Provide Context

Premise: We learn best when we integrate new ideas into mental “bins” (pre-existing or newly created).

• Note: This can be especially challenging for nonmajor courses in science, because students typically enter these courses without any pre-existing “bins” in which to organize new science knowledge.
Strategy 2. Always Provide Context

A key part of context is *relevance*.

It’s human nature to be more interested in subjects that seem relevant to our lives.
Strategy 2. Always Provide Context

A key part of context is **relevance**.

It’s human nature to be more interested in subjects that seem relevant to our lives.

Example: Why should we care about Venus or Mars?

If Earth moved to Venus's orbit

More intense sunlight…
...would raise surface temperature by about 30°C.

Higher temperature increases evaporation, and warmer air holds more water vapor.

Runaway greenhouse effect

Additional water vapor further strengthens the greenhouse effect.

Result: Oceans evaporate and carbonate rocks decompose, releasing CO₂...

...making Earth hotter than Venus.
Strategy 3. Emphasize Conceptual Understanding

Premise: Facts are important, but it’s too easy to fall into “stamp collecting” of facts at the expense of conceptual understanding.

Use concepts to guide selection of facts:
• relevance to big picture
• taught in context
• contribute to conceptual understanding
Strategy 4. Proceed from the Concrete to the Abstract.

Premise: Long known that this is the best way to learn.

Key approaches:

context-driven vs. content-driven teaching

“bridges to the familiar”
Strategy 4. Proceed from the Concrete to the Abstract.

Premise: Long known that this is the best way to learn.

Example:
Strategy 5. Recognize and Address Student Misconceptions

Premise: Students do not arrive as blank slates, and holding misconceptions that must be dispelled before they can learn the reality.

Identify misconceptions, then get students to recognize them for themselves. E.g.,

• dispel through experience – paper and rock
• “personal paradoxes”
• seasons misconception:

→ “What season is it now in the southern hemisphere?”
• misconception of “no gravity in space”:

→ Why does the moon orbit the Earth?
Why does the flag stay up?

Tori thought that Max should know a little history before his trip. So she told Max about the first astronauts who went to the Moon.

"Listen carefully, Max. Neil Armstrong and Buzz Aldrin were the first people to walk on the Moon. Their mission was called Apollo 11. They landed on the Moon on July 20, 1969. Neil Armstrong stepped out first. Do you know what he said when he took his first moon step?"

"Armstrong said:

That’s one small step for a man, one giant leap for mankind.

"Do you understand, Max?"

Max beamed, and Tori took that as a "yes."

"Good boy, Max," said Tori.
Strategy 6. Use Plain Language

Premise: The number of new terms in many introductory science books is larger than the number of words taught in many first courses in foreign language!
Strategy 6. Use Plain Language

Premise: The number of new terms in many introductory science books is larger than the number of words taught in many first courses in foreign language!

A — Eliminate unnecessary jargon: Use common English terms whenever possible.
Strategy 6. Use Plain Language

Premise: The number of new terms in many introductory science books is larger than the number of words taught in many first courses in foreign language!

A — Eliminate unnecessary jargon: Use common English terms whenever possible.

For example: Do you know what these terms mean?

scarps on Mercury
lunar regolith
chondrites vs. achondrites
Premise: The number of new terms (jargon) in many introductory science books is larger than the number of words taught in many first courses in foreign language!

A — Eliminate unnecessary jargon: Use common English terms whenever possible.

Solutions:

scarps on Mercury = cliffs on Mercury
lunar regolith = powdery lunar soil
chondrites vs. achondrites = primitive vs. processed meteorites
B— Simplify “necessary” jargon: Where jargon is unavoidable, seek acceptable alternative terms that may be more meaningful than traditional terms.

- hydrostatic equilibrium → gravitational equilibrium
- inertial reference frame → free-float frame
- Type I/II supernovae → white dwarf (Type Ia) or massive star (Typea Ib, c, II) supernovae
- Dwarfs...
Try my dwarf quiz:

1. What color is a brown dwarf?
 a. brown
 b. yellow
 c. magenta
 d. white
Try my dwarf quiz:

2. As a white dwarf cools over many millions of years, it changes:

 a. white dwarf to red dwarf to brown dwarf to black dwarf.

 b. white dwarf to red dwarf to black dwarf, but never becoming a brown dwarf.

 c. white dwarf to red dwarf to dwarf planet.

 d. white dwarf to black dwarf without passing through anything else in between.
Try my dwarf quiz:

5. What does a yellow dwarf turn into next, after it stops being a yellow dwarf?

a. Orange dwarf
b. Brown dwarf
c. White dwarf
d. Dwarf planet
e. Red Giant
Try my dwarf quiz:

11. In the event of SETI success, which type of dwarf is most likely to have sent the signal to us?

 a. Red dwarf
 b. Green dwarf
 c. White dwarf
 d. Brown Dwarf
 e. Dwarf planet

Key point: Professionals get comfortable with all this jargon, but it will drive our students nuts!
Strategy 7. Challenge Your Students

Premise: Don’t dumb your teaching down; by and large, students will rise to meet your expectations, as long as you follow the other strategies and practice good teaching.
Strategy 7. Challenge Your Students

Premise: Don’t dumb your teaching down; by and large, students will rise to meet your expectations, as long as you follow the other strategies and practice good teaching.

If a topic is important and interesting, find a way to present it. If you do it well, your students will find it just as interesting as you do.
My personal favorite example — Relativity

• Nearly everyone has heard of it — especially $E = mc^2$, prohibition on faster-than-light travel — and they want to know why.

• And it’s really not that hard to explain, if you devote a bit of time to it.
Why you can’t go faster than a constant c:

Your point of view

No matter how long you fire your rocket engines . . .

. . . your own light races ahead of you at c.

Anyone else’s point of view

Your light is traveling at c . . .

. . . and because it is moving ahead of you, you must be going slower than c.
For the general public:

Textbooks (college):

As read from the Space Shuttle!

For children:

www.JeffreyBennett.com
Don’t miss…

The Max Goes to the Moon Planetarium show

available to planetariums everywhere
www.bigkidscience.com/planetariumshow
Coming Soon…

Fall 2013:
-- Max Goes to the Space Station
-- “Story Time From Space”

early 2014

www.jeffreybennett.com
jeff@bigkidsscience.com